The Dynamical Mordell-Lang Conjecture (Innbundet)

Serie: Mathematical Surveys and Monographs 



Legg i ønskeliste

Forfatter: og
Innbinding: Innbundet
Utgivelsesår: 2016
Antall sider: 280
Forlag: American Mathematical Society
Språk: Engelsk
ISBN/EAN: 9781470424084
Kategori: Matematikk
Omtale The Dynamical Mordell-Lang Conjecture
The Dynamical Mordell-Lang Conjecture is an analogue of the classical Mordell-Lang conjecture in the context of arithmetic dynamics. It predicts the behavior of the orbit of a point $x$ under the action of an endomorphism $f$ of a quasiprojective complex variety $X$. More precisely, it claims that for any point $x$ in $X$ and any subvariety $V$ of $X$, the set of indices $n$ such that the $n$-th iterate of $x$ under $f$ lies in $V$ is a finite union of arithmetic progressions. In this book the authors present all known results about the Dynamical Mordell-Lang Conjecture, focusing mainly on a $p$-adic approach which provides a parametrization of the orbit of a point under an endomorphism of a variety.

Til toppen

Bøker i serien